

Low CTE & High Stiffness Composites with Directly Polishable Surfaces for Mirrors and Structures

Mehmet Akbas, Mike Aghajanian, Prashant Karandikar, Sam Salamone, Daniel Mastrobattisto, Bill Vance

June 17, 2009 Mirror Technology SBIR/STTR Workshop

Presentation Outline

- Overview of M Cubed Technologies: Materials, Capabilities & Process.
- High Specific Stiffness Composite Development Program
 - Reaction Bonded B₄C (RBBC-751)
 - Diamond Reinforced Reaction Bonded SiC Composites
 - Formation of Machineable Surfaces on Diamond Reinforced composites (Patents Pending)
- Summary & Conclusions

M Cubed Technologies: Facilities

Facilities: Overview

- ◆ M Cubed Technologies Monroe CT Site, ~ 50,000 sg.ft.
 - Design & Analysis:CAD, CAM, (ProE, ProM, ProMechanica, Virtual Gibbs, SurfCam)
 - Research & Development: Materials Development and Characterization.
 - Advanced Machining (cutting, grinding, lapping, EDM)
 - Clean room Assembly (Class 100 benches; Class 1,000 and 10,000 rooms)
 - Inspection (12" and 18" fully instrumented laser interferometers)
 - Manufacturing Focus: Precision Products (Reaction Bonded)
- M Cubed Technologies Newark DE Site, ~ 140,000 sg.feet
 - Design & Analysis:
 - Research & Development: Materials Development and Characterization laboratories.
 - Manufacturing Focus: Metal Matrix Composites & Ceramics.(Armor & Industrial)

Manufacturing Capabilities: RBSC Products

Capacity and capability exists at CT and DE facilities to produce small to large size products for precision applications.

Infiltration:

Width (mm)	Depth (mm)	Depth (mm) Height (mm) Comme	
1700	2300	200	Modified Large Furnace
1400	2300	900	Large Furnace

Finishing:

Width (mm)	Depth (mm)	Height (mm)	Comments
2200	3000	300	CNC Machining Center
3000	5000	600	Surface Grinding

Manufacturing Capabilities: MMC Products

Capacity and capability exists at DE facility to produce small to large size products for precision applications.

1.5 m x 1.5 m

Furnace

2.4 m x 4.4 m

Furnace

- Large size castings to 2.2m²
- Furnace expandable to produce 3.2m² products.
- Finish machining capability in CT facility or via subcontract for large structures.

Finishing Capability for Large Structures

Vertical Center:

- Cube: 1m x 2m x .9m
- Angular rotary positioning of .0001 deg. (.36 arc sec.) accuracy to 10 arc sec.
- Resolution: 1um with .4um repeatability
- Squareness to 2um in 500mm travel

Horizontal Center:

- Cube: 1.2m x 1m x 1.1m
- Angular rotary positioning of .001 deg. (3.6 arc sec.) accuracy to 60 arc sec.
- Resolution: 1um with .4um repeatability
- Squareness to 4um in 700mm travel

• Additional capacity for large structures available via outsourcing.

Finishing and Metrology Capability

CT Facility has capability and equipment to produce a wide range of high performance products that require precision tolerances and flatness.

- Multiple CNC machining centers
- Surface grinding

Multiple CMM

- EDM
- Multiple lapping machines for precision flatness.
- Clean Rooms for final assembly and Metrology.

Multiple CMMs and support equipment for final inspection and qualification

- 450 and 300mm ZygoTM Phase Shift Interferometry.
- Zygo New View 200 Scanning White Light Interferometer for surface profiling.

Reaction Bonding: Process Overview

High Specific Stiffness Composite Development

• M Cubed Technologies developed two composite materials to complement existing materials portfolio.

Material Family	Process	Features	Status
RBBC-751 (Si/SiC/B ₄ C)	Reaction Bonding	Very high specific stiffness & low density. Large size capability for precision and optical structures	Full Production Capability
RBSC (Si/SiC) + Diamond	Reaction Bonding	Ultra high specific stiffness. Very high thermal conductivity & low CTE for precision and optical structures.	Pilot line running. M Cubed technologies accepts orders on case by case basis.

Material properties of RBBC –751 and RBSC + diamond will be discussed in the following slides.

Composite Properties:

M Cubed Grade	Density (g/cc)	Young's Modulus (GPa)	Specific Stiffness (GPa/g/cc)	Thermal Conduct. @RT (W/mk)	CTE, 20 to 100°C (ppm/K)	Thermal Stability (W/mK/ppm /K)	Flexural Strength (MPa)	Specific Strength (MPa/g/cc)	Fracture Toughnes s (MPa m ^{1/2})
Properties of Be for	Properties of Be for Comparison - Reference Data								
* Beryllium(S-200F)	1.85	303	164	146	12	12	324	175	9 to 13
* BeAl Alloy (#363)	2.16	207	96	105	14	8	290	134	N/A
* AlBeMet162	2.1	196	93	212	14	15	305	145	9 to 13
Reaction Bonded Bo	Reaction Bonded Boron Carbide (Si/SiC/B₄C): Material has extremely high specific stiffness								
RBBC-751 (B₄C/Si/SiC)	2.56	400	148	52	4.8	11	280	109	5
Diamond Reinforced Reaction Bonded SiC									
RBSC (Si/SiC)-40 vol.% Diamond	3.27	580	177	380	1.8	211	N/A	N/A	N/A

Material properties of RBBC –751 and RBSC + diamond compares favorable with Be and Be-alloys.

Reaction Bonded Boron Carbide – (RBBC –751)

- Features very high specific stiffness due to high Young's modulus (400 GPa) and low density (2.56 g/cc)
- Composite is suitable for manufacturing of large pieces such as optical structures, precision stages & optical mirrors.

Reaction Bonded B₄C – RBBC- 751

M Cubed's RBBC - 751Ceramics

• As a result of the high stiffness and low density of B₄C, its addition to an Si/SiC ceramic leads to a composite with very high specific stiffness.

Reaction Bonded B₄C Properties – Si-SiC/B₄C

Property	RBBC-751
Nominal Composition (vol. %)	75% B ₄ C, 10% SiC, 15% Si
Density (g/cc)	2.56
Young's Modulus (GPa)	400
CTE at 20°C (ppm/K)	
CTE ave from 20-100°C (ppm/K)	4.8
Thermal Conductivity (W/m-K)	50
Specific Heat (J/kg-K)	890
Knoop 2 kg Hardness (kg/mm²)	1550
Flexural Strength (MPa)	280
Fracture Toughness (MPa-m ^{1/2})	5.0

RBBC – 751: Product Examples

Thin Walled Box Structure	RBBC-751
Nominal Composition (vol. %)	75% B ₄ C, 10% SiC, 15% Si
Density (g/cc)	2.56
Young's Modulus (GPa)	400
Length (mm)	75
Width (mm)	75
Height (mm)	30
Wall thickness (mm)	1
Rib Thickness (mm)	1
Weight (g)	66.7

RBSC + Diamond Materials

- Features very high thermal and mechanical stability due to high Young's modulus > 400 GPa and thermal conductivity > 400 W/mK.
- Composite is suitable for precision devices such as optical structures, stages and mirrors.

Reaction Bonding of Si/SiC + Diamond Composites

- Si/SiC and diamond composites can be manufactured using M Cubed standard reaction bonded process.
- Composites with 14 to 70 vol.% diamond with diamond particles size ranging from 6 to 65 micron have been successfully produced.

.

RBSC + Diamond Composites (Si/SiC + Diamond)

Fracture Surfaces of M Cubed's RBSC + Diamond Composites

- Diamond has very attractive properties, including very high stiffness, very high thermal conductivity and very low CTE.
- As a result, the addition of diamond to RBSC yields composites with very high mechanical and thermal stability.

RBSC + **Diamond Properties** - *Preliminary*

Property	RBSC + 14% Diamond	RBSC + 42% Diamond	RBSC + 70% Diamond	
Density (g/cc)	3.19	3.27	3.30	
Young's Modulus (GPa)	490	580	700	
CTE avg. from 20-100°C (ppm/K)	2.1	1.8	1.4	
Thermal Conductivity (W/m-K)	270	380	625	

- While Si/SiC + diamond composites have very attractive properties, their applications requires development of machining technologies for these super hard composites.
- M Cubed developed processing technologies to form diamond free machineable surfaces on diamond reinforced RBSC composites.

Directly Polishable Thick Film Technology

- ◆ Technology includes preferential decomposition of surface diamond particles to obtain SiC/Si surface chemistry.
- Technology has been successfully demonstrated (Patent Pending).

Directly Polishable Thick Film Technology

- Technology includes coating of preform. Coated preform are then co-infiltrated to obtain monolithic composites.
- Technology has been successfully demonstrated (Patent Pending).

Product Example: Directly Polishable Surfaces

Laser Mirror Structure	RBBC-751	
Base Composition (vol. %)	40%Diamond, 55% SiC, 5% Si	
Density (g/cc)	3.27	
Young's Modulus (GPa)	580	
Coating	Si/SiC	
Flatness	λ/4	

Product Example: Directly Polishable Surfaces

<20A Average Surface Roughness Achieved with Conventional Grinding and Polishing

Product Example: Coated Surfaces (Si Clad or CVD SiC)

Mirror Structure	RBBC-751		
Base Composition (vol. %)	40%Diamond, 55% SiC, 5% Si		
Density (g/cc)	3.27		
Young's Modulus (GPa)	580		
Coating	Si Clad		
Flatness (PV)	λ/4		

Thermal & Mechanical Stability Chart

Summary & Conclusions

- M Cubed Technologies produces very high specific stiffness composites based on reaction bonded B₄C and diamond reinforced SiC
- Diamond Reinforced Si/SiC composites combines ultra high specific stiffness with excellent thermal stability.
- Diamond reinforced composites surfaces can be tailored to enable machining & direct polishing.
- M Cubed is in full production with RBBC-751 and accepts orders for Diamond reinforced Si/SiC composites case by case basis.

Contact Information:

Dr. Jai Singh: J_Singh@mmmt.com, Cell: (203) 540 9633

Mr. Craig Emmons: C_Emmons@mmmt.com, Cell: (203) 540 9768

Dr. Mehmet Akbas: M_Akbas@mmmt.com Cell: (203) 572 2600